Evolution of the Automotive Body Coating Process—A Review

http://www.mdpi.com/2079-6412/6/2/24/pdf



References

  1. Kensium. History Timeline and Types of Automotive Paint. Available online: http://www.eastwood.com/
    blog/eastwood-chatter/history-timeline-and-types-of-automotive-paint/ (accessed on 7 June 2016).
  2. Khanna, A.S. High-performance Organic Coatings; Woodhead Publishing Limited: Cambridge, UK, 2008.
  3. Standeven, H. The Development of Decorative Gloss Paints in Britain and the United States C. 1910–1960.
    J. Am. Inst. Conserv. 2006, 45, 51–65. [CrossRef]
  4. Learner, T. A review of synthetic binding media in twentieth-century paints. Conservator 2000, 24, 96–103.
    [CrossRef]
  5. Streitberger, H.-J.; Dossel, K.-F. Automotive Paints and Coatings; Wiley-VCH Verlag GmbH & Co. KGaA:
    Weinheim, Germany, 2008.
  6. Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD).
    Prog. Mater. Sci. 2007, 52, 1–6. [CrossRef]
  7. Fettis, G. Automotive Paints and Coatings; Wiley-VCH: New York, NY, USA, 2008.
  8. Jürgens, U. Implanting change: The role of ‘indigenous transplants’ in transforming the German productive
    model. In The Transfer and Hybridization of Productive Models in the International Automobile Industry; Boyer, R.,
    Charron, E., Jurgens, U., Tolliday, S., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 319–341.
  9. Prieto, J. Painting the future green. Eur. Coat. J. 2010, 4, 20–25.
  10. Melchiors, M.; Sonntag, M.; Kobusch, C.; Jürgens, E. Recent developments in aqueous two-component
    polyurethane (2K-PUR) coatings. Prog. Org. Coat. 2000, 40, 99–109. [CrossRef]
  11. Maile, F.J.; Pfaff, G.; Reynders, P. Effect pigments—Past, present and future. Prog. Org. Coat. 2005, 54,
    150–163. [CrossRef]
  12. Liu, Y.; Sparer, J.; Woskie, S.R.; Cullen, M.R.; Chung, J.S.; Holm, C.T.; Redlich, C.A. Qualitative assessment of
    isocyanate skin exposure in auto body shops: A pilot study. Am. J. Ind. Med. 2000, 37, 265–274. [CrossRef]
  13. Bensalah, W.; Loukil, N.; Wery, M.D.-P.; Ayedi, H.F. Assessment of automotive coatings used on different
    metallic substrates. Int. J. Corros. 2014, 2014, 838054. [CrossRef]
  14. Galitsky, C.; Worrel, E. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly
    Industry: An Energy Star Guide for Energy and Plant Managers; Lawrence Berkeley National Laboratory,
    University of California: Berkeley, CA, USA, 2008. Available online: https://www.energystar.gov/ia/
    business/industry/LBNL-50939.pdf (accessed on 8 June 2016).Coatings 2016, 6, 24 21 of 22
  15. Galitsky, C.; Worrel, E. ENERGY STAR® Guides for Energy Efficiency Opportunities, Featuring the Motor
    Vehicle Assembly Industry. Available online: http://aceee.org/files/proceedings/2003/data/papers/SS03_
    Panel4_Paper_11.pdf (accessed on 8 June 2016).
  16. Geffen, C.A.; Rothenberg, S. Suppliers and environmental innovation: the automotive paint process. Int. J.
    Oper. Prod. Manag. 2000, 20, 166–186. [CrossRef]
  17. Kwaambwa, H. A review of current and future challenges in paints and coatings chemistry. Prog. Multidiscip.
    Res. J. 2013, 3, 75–101.
  18. Cheah, L.W. Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in
    the U.S. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, September 2010.
  19. Caruso, M.M.; Delafuente, D.A.; Ho, V.; Sottos, N.R.; Moore, J.S.; White, S.R. Solvent-promoted self-healing
    epoxy materials. Macromolecules 2007, 40, 8830–8832. [CrossRef]
  20. Yang, Y.; Urban, M.W. Self-healing polymeric materials. Chem. Soc. Rev. 2013, 42, 7446–7467. [CrossRef]
    [PubMed]
  21. Fischer, H.R.; García, S.J. Active Protective Coatings. In Active Protective Coatings: New-Generation Coatings
    for Metals; Hughes, A.E., Mol, J.M.C., Zheludkevich, M.L., Buchheit, R.G., Eds.; Springer: Dordrecht,
    The Netherlands, 2016; pp. 139–156.
  22. Baghdachi, J.; Hernandez, H.R.P.; Templeman, C.G. Self-stratifying automotive topcoat compositions and
    processes. U.S. Patent 7,863,375, 4 January 2011.
  23. Ansdell, D. Painting of plastic body components for cars. Ind. Product. Eng. 1980, 3, 30–35.
  24. Chang, L.P. Analysis of the Influence of Car Body Structure on the Pretreatment & Electrophoresis Process.
    Shanghai Coat. 2011, 8, 27–28.
  25. Akafuah, N.K. Automotive paint spray characterization and visualization. In Automotive Painting Technology;
    Springer: Dordrecht, The Netherlands, 2013; pp. 121–165.
  26. Maeda, S. Surface chemistry of galvanized steel sheets relevant to adhesion performance. Prog. Org. Coat.
    1996, 28, 227–238. [CrossRef]
  27. Narayanan, T.S. Surface pretreatment by phosphate conversion coatings—A review. Rev. Adv. Mater. Sci.
    2005, 9, 130–177.
  28. Loop, F.M. Cathodic Automotive Electrodeposition; No. 780189; SAE Technical Paper; SAE International:
    Warrendale, PA, USA, 1978.
  29. Tomalino, M.; Bianchini, G. Heat-expandable microspheres for car protection production. Prog. Org. Coat.
    1997, 32, 17–24. [CrossRef]
  30. Moon, J.I.; Lee, Y.H.; Kim, H.J.; Noh, S.M.; Nam, J.H. Synthesis of elastomeric polyester and physical
    properties of polyester coating for automotive pre-primed system. Prog. Org. Coat. 2012, 75, 65–71.
    [CrossRef]
  31. Poth, U. Automotive Coatings Formulation: Chemistry, Physics und Practices. Vincentz Network GmbH &
    Co KG: Hannover, Germany, 2008.
  32. Noble, K.L. Waterborne polyurethanes. Prog. Org. Coat. 1997, 32, 131–136. [CrossRef]
  33. Misev, T.A.; Van der Linde, R. Powder coatings technology: New developments at the turn of the century.
    Prog. Org. Coat. 1998, 34, 160–168. [CrossRef]
  34. Razin, A.A.; Ramezanzadeh, B.; Yari, H. Detecting and estimating the extent of automotive coating
    delamination and damage indexes after stone chipping using electrochemical impedance spectroscopy.
    Prog. Org. Coat. 2016, 92, 95–109. [CrossRef]
  35. Lenges, C.P.; Niu, Y.; Hsiao, Y.L.; Ding, J.; Barsotti, R.J.; Kelly, R.J.; Kim, Y.H. Rheology control agents for
    coating compositions. U.S. Patent 7,652,121, 26 January 2010.
  36. Ageev, E.V.; Novikov, E.P.; Altukhov, A.Y.; Tikhomirov, V.P. Size Distribution of Powdered Aluminium
    Sample Microparticles Produced Using Electroerosion Dispersion. In Proceedings of the 2015
    International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk,
    Russian Federation, 1–4 December 2015; pp. 1–4.
  37. Wu, Y.H.; Surapaneni, S.; Srinivasan, K.; Stibich, P. Automotive Vehicle Body Temperature Prediction in a Paint
    Oven; No. 2014-01-0644; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2014.
  38. Pfaff, G. Special Effect Pigments: Technical Basics and Applications; Vincentz Network GmbH & Co KG:
    Hannover, Germany, 2008.Coatings 2016, 6, 24 22 of 22
  39. Gerlock, J.L.; Kucherov, A.V.; Smith, C.A. Determination of active HALS in automotive paint systems II:
    HALS distribution in weathered clearcoat/basecoat paint systems. Polym. Degrad. Stab. 2001, 73, 201–210.
    [CrossRef]
  40. Betz, P.; Bartelt, A. Scratch resistant clear coats: Development of new testing methods for improved coatings.
    Prog. Org. Coat. 1993, 22, 27–37. [CrossRef]
  41. Noh, S.M.; Lee, J.W.; Nam, J.H.; Byun, K.H.; Park, J.M.; Jung, H.W. Dual-curing behavior and scratch
    characteristics of hydroxyl functionalized urethane methacrylate oligomer for automotive clearcoats.
    Prog. Org. Coat. 2012, 74, 257–269. [CrossRef]
  42. Dutt, W.; King, J.G. Method of producing a polished metal effect finish on a vehicle. U.S. Patent 8,512,802,
    20 August 2013.
  43. Collong, W.; Göbel, A.; Kleuser, B.; Lenhard, W.; Sonntag, M. 2K waterborne clearcoat—A competition
    between crosslinking and side reactions. Prog. Org. Coat. 2002, 45, 205–209. [CrossRef]
  44. Papasavva, S.; Kia, S.; Claya, J.; Gunther, R. Characterization of automotive paints: An environmental impact
    analysis. Prog. Org. Coat. 2001, 43, 193–206. [CrossRef]
  45. Lefebvre, A. Atomization and Sprays; CRC Press: Boca Raton, FL, USA, 1988; Volume 1040.
  46. Sirignano, W.A. Fluid Dynamics and Transport of Droplets and Sprays; Cambridge University Press: Cambridge,
    UK, 1999.
  47. Liu, L.S. Experimental and Theoretical Investigation on the Characteristics and Two-Phase Spray Flow Field
    of Effervescent Atomizers. Ph.D. Thesis, Tianjing University, Tianjin, China, 2001.
  48. Corbeels, P.L.; Senser, D.W.; Lefebvre, A.H. Atomization characteristics of a highspeed rotary-bell paint
    applicator. At. Sprays 1992, 2, 87–99. [CrossRef]
  49. Domnick, J. Effect of bell geometry in high-speed rotary bell atomization. In Proceedings of the 23rd Annual
    Conference on Liquid Atomization and Spray Systems, Brno, Czech, 6–8 September 2010; p. 69.
  50. Lee, I.; Kim, D.; Koo, J. Liquid jet breakup structure and transfer efficiency of a two-stage air-blast injector.
    At. Sprays 2012, 22, 561–579. [CrossRef]
  51. Salazar, A.J.; McDonough, J.M.; Saito, K. Computational Fluid Dynamics Simulation of the Automotive
    Spray Painting Process. Comput. Model. Simul. Eng. 1997, 2, 13–144.
  52. Salazar, A.J.; Saito, K.; Alloo, R.P.; Tanaka, N. Wet scrubber and paint spray booth including the wet scrubber.
    U.S. Patent 6,093,250, 25 July 2000.
  53. Wicks, Z.W.; Jones, F.N.; Pappas, S.P.; Wicks, D.A. Color and Appearance. In Organic Coatings: Science and
    Technology, 3rd ed.; Wiley-Interscience: New York, NY, USA, 1999; pp. 382–416.
  54. Gómez, O.; Perales, E.; Chorro, E.; Burgos, F.J.; Viqueira, V.; Vilaseca, M.; Pujol, J. Visual and instrumental
    assessments of color differences in automotive coatings. Color Res. Appl. 2016, 41, 384–391. [CrossRef]
  55. Schulz, U.; Trubiroha, P.; Schernau, U.; Baumgart, H. The effects of acid rain on the appearance of automotive
    paint systems studied outdoors and in a new artificial weathering test. Prog. Org. Coat. 2000, 40, 151–165.
    [CrossRef]
  56. Craven, J.M. Powder coating composition for automotive topcoat. U.S. Patent 4,346,144, 24 August 1982.
  57. Weiss, K.D. Paint and coatings: A mature industry in transition. Prog. Polym. Sci. 1997, 22, 203–245.
    [CrossRef]
  58. Hayashi, H.; Ishii, M. Development of 3-Wet Paint System with Improved Appearance-Paint Design Based on Transfer
    Mechanism of Unevenness from Under Layers; No. 2014-01-1048; SAE Technical Paper; SAE International:
    Warrendale, PA, USA, 2014.

81 views

Same Tag Posts

  1. ワンジェイテクトの技術基盤で次の道を開く、次期中計では選択と集中も辞さず (,)
  2. コットンリンターCNFで強度を高めた3Dプリント材料、滑らかなテクスチャーも実現 (,)
  3. 島津製作所が次世代グリーンCO2燃料技術研究組合に参画 (,)
  4. リチウムイオン二次電池のリサイクル時の発熱リスクを減らす新たな電池不活性化技術 (,)
  5. ホンダフリード全面改良、3列目にこだわり他社の競合モデルと差別化 (,)
  6. PR: “一品一葉”のデータを社内横断で活用 東洋エンジニアリングのDXの進め方 (,)
  7. 名古屋大がAPI策定のオープンSDVイニシアチブを設立、スズキなど参加 (,)
  8. ルネサスがSDV対応の車載ソフト開発基盤「RoX」を発表、「R-Car Gen 5」を加速 (,)
  9. 東芝などが次世代リチウムイオン電池、負極にニオブチタン酸化物 (,)
  10. シャープがロック板レスのコインパーキングシステム、センサーを新開発 (,)

Same Category Posts